REFERENCEs
- M. Shamsudduha, G. Joseph, S. S. Haque, M. R. Khan, A. Zahid, and K. M. U. Ahmed, “Multi-hazard Groundwater Risks to Water Supply from Shallow Depths: Challenges to Achieving the Sustainable Development Goals in Bangladesh,” Expo Health, vol. 12, no. 4, 2020, doi: 10.1007/s12403-019-00325-9.
- N. Alfarrah and K. Walraevens, “Groundwater overexploitation and seawater intrusion in coastal areas of arid and semi-arid regions,” Water (Switzerland), vol. 10, no. 2, 2018, doi: 10.3390/w10020143.
- S. Badaruddin, A. D. Werner, and L. K. Morgan, “Water table salinization due to seawater intrusion,” Water Resour Res, vol. 51, no. 10, 2015, doi: 10.1002/2015WR017098.
- C. T. DeGroot and A. G. Straatman, “Towards a porous media model of the human lung,” AIP Conf Proc, vol. 1453, no. 1, 2011, doi: 10.1063/1.4711155.
- V. Koulich, J. L. Lage, C. C. W. Hsia, and R. L. Johnson, “A porous medium model of alveolar gas diffusion,” J Porous Media, vol. 2, no. 3, 1999, doi: 10.1615/JPorMedia.v2.i3.40.
- F. Kuwahara, Y. Sano, J. Liu, and A. Nakayama, “A porous media approach for bifurcating flow and mass transfer in a human lung,” J Heat Transfer, vol. 131, no. 10, 2009, doi: 10.1115/1.3180699.
- N. Avilés-Rojas and D. E. Hurtado, “Whole-lung finite-element models for mechanical ventilation and respiratory research applications,” Front Physiol, vol. 13, 2022, doi: 10.3389/fphys.2022.984286.
- C. Nicholson, “Diffusion and related transport mechanisms in brain tissue,” Reports on Progress in Physics, vol. 64, no. 7, 2001, doi: 10.1088/0034-4885/64/7/202.
- A. R. A. Khaled and K. Vafai, “The role of porous media in modeling flow and heat transfer in biological tissues,” 2003. doi: 10.1016/S0017-9310(03)00301-6.
- J. Siepmann and F. Siepmann, “Modeling of diffusion controlled drug delivery,” 2012. doi: 10.1016/j.jconrel.2011.10.006.
- R. Zevenhoven, J. Fagerlund, and J. K. Songok, “CO2 mineral sequestration: Developments toward large-scale application,” 2011. doi: 10.1002/ghg3.7.
- S. Kalam, T. Olayiwola, M. M. Al-Rubaii, B. I. Amaechi, M. S. Jamal, and A. A. Awotunde, “Carbon dioxide sequestration in underground formations: review of experimental, modeling, and field studies,” 2020. doi: 10.1007/s13202-020-01028-7.
- T. L. Rashwan, M. A. Asad, I. L. Molnar, M. Behazin, P. G. Keech, and M. M. Krol, “Exploring the governing transport mechanisms of corrosive agents in a Canadian deep geological repository,” Science of the Total Environment, vol. 828, 2022, doi: 10.1016/j.scitotenv.2022.153944.
- B. Amaziane, M. El Ossmani, and M. Jurak, “Numerical simulation of gas migration through engineered and geological barriers for a deep repository for radioactive waste,” in Computing and Visualization in Science, 2012. doi: 10.1007/s00791-013-0196-1.
- R. J. Blackwell, J. R. Rayne, and W. M. Terry, “Factors Influencing the Efficiency of Miscible Displacement,” Transactions of the AIME, vol. 217, no. 01, 1959, doi: 10.2118/1131-g.
- M. Gamal Rezk and J. Foroozesh, “Uncertainty effect of CO2 molecular diffusion on oil recovery and gas storage in underground formations,” Fuel, vol. 324, 2022, doi: 10.1016/j.fuel.2022.124770.
- R. E. Hayes, A. Fadic, J. Mmbaga, and A. Najafi, “CFD modelling of the automotive catalytic converter,” in Catalysis Today, 2012. doi: 10.1016/j.cattod.2012.03.015.
- T. Starý, O. Šolcová, P. Schneider, and M. Marek, “Effective diffusivities and pore-transport characteristics of washcoated ceramic monolith for automotive catalytic converter,” Chem Eng Sci, vol. 61, no. 18, 2006, doi: 10.1016/j.ces.2006.05.014.
- N. Djordjevic, P. Habisreuther, and N. Zarzalis, “Experimental study on the basic phenomena of flame stabilization mechanism in a porous burner for premixed combustion application,” in Energy and Fuels, 2012. doi: 10.1021/ef3013008.
- S. R. Addamane, M. Hajilou, and E. L. Belmont, “Experimental and analytical study of a porous media reformer with passive air entrainment,” Int J Hydrogen Energy, vol. 41, no. 30, 2016, doi: 10.1016/j.ijhydene.2016.05.035.
- C. H. Bedingfield and T. B. Drew, “Analogy between Heat Transfer and Mass Transfer,” Ind Eng Chem, vol. 42, no. 6, 1950, doi: 10.1021/ie50486a029.
- J. Wilk, “Heat/mass transfer analogy in the case of convective fluid flow through minichannels,” 2020. doi: 10.1016/j.ijthermalsci.2020.106467.
- J. H. Brenner, D. Edwards, Macrotransport processes, 1st edition, Butterworth-Heinemann, Boston, 1993.
- H. Brenner, Dispersion Resulting from Flow through Spatially Periodic Porous Media, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 297 (1980) 81–133. https://doi.org/10.1098/rsta.1980.0205.
- M. Shapiro, H. Brenner, Dispersion of a chemically reactive solute in a spatially periodic model of a porous medium, Chem Eng Sci 43 (1988) 551–571. https://doi.org/10.1016/0009-2509(88)87016-7.
- H. Brenner, P.M. Adler, Dispersion Resulting from Flow through Spatially Periodic Porous Media II. Surface and Intraparticle Transport, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 307 (1982) 149–200. https://doi.org/10.1098/rsta.1982.0108.
- D.A. Edwards, M. Shapiro, H. Brenner, Dispersion and reaction in two-dimensional model porous media, Physics of Fluids A: Fluid Dynamics 5 (1993) 837. https://doi.org/10.1063/1.858631.
- D.A. Edwards, M. Shapiro, H. Brenner, M. Shapira, Dispersion of inert solutes in spatially periodic, two-dimensional model porous media, Transp Porous Media 6 (1991) 337–358. https://doi.org/10.1007/BF00136346.
- S. Whitaker, Advances in theory of fluid motion in porous media, Ind Eng Chem 61 (1969) 14–28. https://doi.org/10.1021/ie50720a004.
- S. Whitaker, Diffusion and dispersion in porous media, AIChE Journal 13 (1967). https://doi.org/10.1002/aic.690130308.
- S. Whitaker, The transport equations for multi-phase systems, Chem Eng Sci 28 (1973) 139–147. https://doi.org/10.1016/0009-2509(73)85094-8.
- D. Ryan, R.G. Carbonell, S. Whitaker, THEORY OF DIFFUSION AND REACTION IN POROUS MEDIA., in: AIChE Symposium Series, 1981.
- F.J. Valdés-Parada, D. Lasseux, S. Whitaker, Upscaling Reactive Transport Under Hydrodynamic Slip Conditions in Homogeneous Porous Media, Water Resour Res 56 (2020). https://doi.org/10.1029/2019WR025954.
- .J. Valdés-Parada, D. Lasseux, S. Whitaker, Diffusion and heterogeneous reaction in porous media: The macroscale model revisited, International Journal of Chemical Reactor Engineering 15 (2017). https://doi.org/10.1515/ijcre-2017-0151.
- W. Cole, N. Gates, T. Mai, D. Greer, and P. Das, “2019 Standard Scenarios Report: A U.S. Electricity Sector Outlook,” National Renewable Energy Laboratory, Golden CO, 2019. Available: https://www.nrel.gov/docs/fy20osti/74110.pdf.
- W. Wang, Q. Luo, B. Li, X. Wei, L. Li, and Z. Yang, “Recent Progress in Redox Flow Battery Research and Development,” Adv Funct Mater, vol. 23, no. 8, pp. 970–986, 2013, doi: 10.1002/adfm.201200694.
- J. Newman and W. Tiedemann, “Porous‐electrode theory with battery applications,” 1975. doi: 10.1002/aic.690210103.
- W. Lai and F. Ciucci, “Mathematical modeling of porous battery electrodes—Revisit of Newman’s model,” Electrochim Acta, vol. 56, no. 11, pp. 4369–4377, Apr. 2011, doi: 10.1016/j.electacta.2011.01.012.
- M.A. Hamid, K.C. Smith, A bottom-up, multi-scale theory for transient mass transport of redox-active species through porous electrodes beyond the pseudo-steady limit, J Power Sources 565 (2023) 232756. https://doi.org/10.1016/J.JPOWSOUR.2023.232756.
- M.A. Hamid, K.C. Smith, Modeling the Transient Effects of Pore-Scale Convection and Redox Reactions in the Pseudo-Steady Limit, J Electrochem Soc 167 (2020) 013521. https://doi.org/10.1149/2.0212001jes.
- K.Eric. Livo, K. Watson, Analysis of MASTER Thermal Data in the Greeley Area of the Front Range Urban Corridor, Colorado—Delineation of Sites for Infrastructure Resource Characterization, U.S. Geological Survey Bulletin 2196, Reston, Virginia, 2004.
- A. Costall, B. Harris, J.P. Pigois, Electrical Resistivity Imaging and the Saline Water Interface in High-Quality Coastal Aquifers, Surv Geophys 39 (2018). https://doi.org/10.1007/s10712-018-9468-0.
- X. Liu, S. Shanbhag, T. V. Bartholomew, J.F. Whitacre, M.S. Mauter, Cost Comparison of Capacitive Deionization and Reverse Osmosis for Brackish Water Desalination, ACS ES and T Engineering 1 (2021). https://doi.org/10.1021/acsestengg.0c00094.
- S.K. Patel, B. Lee, P. Westerhoff, M. Elimelech, The potential of electrodialysis as a cost-effective alternative to reverse osmosis for brackish water desalination, Water Res 250 (2024). https://doi.org/10.1016/j.watres.2023.121009.
- M.M. Generous, N.A.A. Qasem, U.A. Akbar, S.M. Zubair, Techno-economic assessment of electrodialysis and reverse osmosis desalination plants, Sep Purif Technol 272 (2021). https://doi.org/10.1016/j.seppur.2021.118875.
- A. Shrivastava, V.Q. Do, K.C. Smith, Efficient, Selective Sodium and Lithium Removal by Faradaic Deionization Using Symmetric Sodium Titanium Vanadium Phosphate Intercalation Electrodes, ACS Appl Mater Interfaces 14 (2022). https://doi.org/10.1021/acsami.2c03261.
- C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan, J. Li, H. Yu, L. Zhang, J. Shu, Prussian Blue Analogues in Aqueous Batteries and Desalination Batteries, Nanomicro Lett 13 (2021). https://doi.org/10.1007/s40820-021-00700-9.
- M. Gao, W. Xiao, L. Miao, Z. Yang, W. Liang, T. Ao, Q. Yang, W. Chen, Prussian blue and its analogs: A robust platform for efficient capacitive deionization, Desalination 574 (2024). https://doi.org/10.1016/j.desal.2023.117278.
- V.Q. Do, E.R. Reale, I.C. Loud, P.G. Rozzi, H. Tan, D.A. Willis, K.C. Smith, Embedded, micro-interdigitated flow fields in high areal-loading intercalation electrodes towards seawater desalination and beyond, Energy Environ Sci 16 (2023). https://doi.org/10.1039/d3ee01302b.
- E.R. Reale, L. Regenwetter, A. Agrawal, B. Dardón, N. Dicola, S. Sanagala, K.C. Smith, Low porosity, high areal-capacity Prussian blue analogue electrodes enhance salt removal and thermodynamic efficiency in symmetric Faradaic deionization with automated fluid control, Water Res X 13 (2021). https://doi.org/10.1016/j.wroa.2021.100116.
- J. Anderson Jr, Fundamentals of Aerodynamics, 2001. https://doi.org/10.1036/0072373350.
- B. Zhao, H. Sun, X. Shi, M. Qi, S. Guo, Investigation of using multi-shockwave system instead of single normal shock for improving radial inflow turbine reliability, Int J Heat Fluid Flow 71 (2018). https://doi.org/10.1016/j.ijheatfluidflow.2018.03.018.
- R. Srivastava, T.G. Keith, Influence of shock wave on turbomachinery blade row flutter, J Propuls Power 21 (2005). https://doi.org/10.2514/1.5325.
- Y. Zhu, P. Jiang, Experimental and analytical studies on the shock wave length in convergent and convergent-divergent nozzle ejectors, Energy Convers Manag 88 (2014). https://doi.org/10.1016/j.enconman.2014.09.023.
- W. Huang, H. Wu, Y. guang Yang, L. Yan, S. bin Li, Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows, Acta Astronaut 174 (2020). https://doi.org/10.1016/j.actaastro.2020.05.001.
- B.H.K. Lee, Oscillatory shock motion caused by transonic shock boundary-layer interaction, AIAA Journal 28 (1990). https://doi.org/10.2514/3.25144.
- B.H.K. Lee, Self-sustained shock oscillations on airfoils at transonic speeds, Progress in Aerospace Sciences 37 (2001). https://doi.org/10.1016/S0376-0421(01)00003-3.
- S. Rashid, F. Nawaz, A. Maqsood, S. Salamat, R. Riaz, Review of wave drag reduction techniques: Advances in active, passive, and hybrid flow control, Proc Inst Mech Eng G J Aerosp Eng 236 (2022). https://doi.org/10.1177/09544100211069796.