"Without data you're just a person with an opinion"
— W. Edwards Deming (American engineer, composer and economist)
REFERENCEs
  1. M. Shamsudduha, G. Joseph, S. S. Haque, M. R. Khan, A. Zahid, and K. M. U. Ahmed, “Multi-hazard Groundwater Risks to Water Supply from Shallow Depths: Challenges to Achieving the Sustainable Development Goals in Bangladesh,” Expo Health, vol. 12, no. 4, 2020, doi: 10.1007/s12403-019-00325-9.
  2. N. Alfarrah and K. Walraevens, “Groundwater overexploitation and seawater intrusion in coastal areas of arid and semi-arid regions,” Water (Switzerland), vol. 10, no. 2, 2018, doi: 10.3390/w10020143.
  3. S. Badaruddin, A. D. Werner, and L. K. Morgan, “Water table salinization due to seawater intrusion,” Water Resour Res, vol. 51, no. 10, 2015, doi: 10.1002/2015WR017098.
  4. C. T. DeGroot and A. G. Straatman, “Towards a porous media model of the human lung,” AIP Conf Proc, vol. 1453, no. 1, 2011, doi: 10.1063/1.4711155.
  5. V. Koulich, J. L. Lage, C. C. W. Hsia, and R. L. Johnson, “A porous medium model of alveolar gas diffusion,” J Porous Media, vol. 2, no. 3, 1999, doi: 10.1615/JPorMedia.v2.i3.40.
  6. F. Kuwahara, Y. Sano, J. Liu, and A. Nakayama, “A porous media approach for bifurcating flow and mass transfer in a human lung,” J Heat Transfer, vol. 131, no. 10, 2009, doi: 10.1115/1.3180699.
  7. N. Avilés-Rojas and D. E. Hurtado, “Whole-lung finite-element models for mechanical ventilation and respiratory research applications,” Front Physiol, vol. 13, 2022, doi: 10.3389/fphys.2022.984286.
  8. C. Nicholson, “Diffusion and related transport mechanisms in brain tissue,” Reports on Progress in Physics, vol. 64, no. 7, 2001, doi: 10.1088/0034-4885/64/7/202.
  9. A. R. A. Khaled and K. Vafai, “The role of porous media in modeling flow and heat transfer in biological tissues,” 2003. doi: 10.1016/S0017-9310(03)00301-6.
  10. J. Siepmann and F. Siepmann, “Modeling of diffusion controlled drug delivery,” 2012. doi: 10.1016/j.jconrel.2011.10.006.
  11. R. Zevenhoven, J. Fagerlund, and J. K. Songok, “CO2 mineral sequestration: Developments toward large-scale application,” 2011. doi: 10.1002/ghg3.7.
  12. S. Kalam, T. Olayiwola, M. M. Al-Rubaii, B. I. Amaechi, M. S. Jamal, and A. A. Awotunde, “Carbon dioxide sequestration in underground formations: review of experimental, modeling, and field studies,” 2020. doi: 10.1007/s13202-020-01028-7.
  13. T. L. Rashwan, M. A. Asad, I. L. Molnar, M. Behazin, P. G. Keech, and M. M. Krol, “Exploring the governing transport mechanisms of corrosive agents in a Canadian deep geological repository,” Science of the Total Environment, vol. 828, 2022, doi: 10.1016/j.scitotenv.2022.153944.
  14. B. Amaziane, M. El Ossmani, and M. Jurak, “Numerical simulation of gas migration through engineered and geological barriers for a deep repository for radioactive waste,” in Computing and Visualization in Science, 2012. doi: 10.1007/s00791-013-0196-1.
  15. R. J. Blackwell, J. R. Rayne, and W. M. Terry, “Factors Influencing the Efficiency of Miscible Displacement,” Transactions of the AIME, vol. 217, no. 01, 1959, doi: 10.2118/1131-g.
  16. M. Gamal Rezk and J. Foroozesh, “Uncertainty effect of CO2 molecular diffusion on oil recovery and gas storage in underground formations,” Fuel, vol. 324, 2022, doi: 10.1016/j.fuel.2022.124770.
  17. R. E. Hayes, A. Fadic, J. Mmbaga, and A. Najafi, “CFD modelling of the automotive catalytic converter,” in Catalysis Today, 2012. doi: 10.1016/j.cattod.2012.03.015.
  18. T. Starý, O. Šolcová, P. Schneider, and M. Marek, “Effective diffusivities and pore-transport characteristics of washcoated ceramic monolith for automotive catalytic converter,” Chem Eng Sci, vol. 61, no. 18, 2006, doi: 10.1016/j.ces.2006.05.014.
  19. N. Djordjevic, P. Habisreuther, and N. Zarzalis, “Experimental study on the basic phenomena of flame stabilization mechanism in a porous burner for premixed combustion application,” in Energy and Fuels, 2012. doi: 10.1021/ef3013008.
  20. S. R. Addamane, M. Hajilou, and E. L. Belmont, “Experimental and analytical study of a porous media reformer with passive air entrainment,” Int J Hydrogen Energy, vol. 41, no. 30, 2016, doi: 10.1016/j.ijhydene.2016.05.035.
  21. C. H. Bedingfield and T. B. Drew, “Analogy between Heat Transfer and Mass Transfer,” Ind Eng Chem, vol. 42, no. 6, 1950, doi: 10.1021/ie50486a029.
  22. J. Wilk, “Heat/mass transfer analogy in the case of convective fluid flow through minichannels,” 2020. doi: 10.1016/j.ijthermalsci.2020.106467.
  23. J. H. Brenner, D. Edwards, Macrotransport processes, 1st edition, Butterworth-Heinemann, Boston, 1993.
  24. H. Brenner, Dispersion Resulting from Flow through Spatially Periodic Porous Media, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 297 (1980) 81–133. https://doi.org/10.1098/rsta.1980.0205.
  25. M. Shapiro, H. Brenner, Dispersion of a chemically reactive solute in a spatially periodic model of a porous medium, Chem Eng Sci 43 (1988) 551–571. https://doi.org/10.1016/0009-2509(88)87016-7.
  26. H. Brenner, P.M. Adler, Dispersion Resulting from Flow through Spatially Periodic Porous Media II. Surface and Intraparticle Transport, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 307 (1982) 149–200. https://doi.org/10.1098/rsta.1982.0108.
  27. D.A. Edwards, M. Shapiro, H. Brenner, Dispersion and reaction in two-dimensional model porous media, Physics of Fluids A: Fluid Dynamics 5 (1993) 837. https://doi.org/10.1063/1.858631.
  28. D.A. Edwards, M. Shapiro, H. Brenner, M. Shapira, Dispersion of inert solutes in spatially periodic, two-dimensional model porous media, Transp Porous Media 6 (1991) 337–358. https://doi.org/10.1007/BF00136346.
  29. S. Whitaker, Advances in theory of fluid motion in porous media, Ind Eng Chem 61 (1969) 14–28. https://doi.org/10.1021/ie50720a004.
  30. S. Whitaker, Diffusion and dispersion in porous media, AIChE Journal 13 (1967). https://doi.org/10.1002/aic.690130308.
  31. S. Whitaker, The transport equations for multi-phase systems, Chem Eng Sci 28 (1973) 139–147. https://doi.org/10.1016/0009-2509(73)85094-8.
  32. D. Ryan, R.G. Carbonell, S. Whitaker, THEORY OF DIFFUSION AND REACTION IN POROUS MEDIA., in: AIChE Symposium Series, 1981.
  33. F.J. Valdés-Parada, D. Lasseux, S. Whitaker, Upscaling Reactive Transport Under Hydrodynamic Slip Conditions in Homogeneous Porous Media, Water Resour Res 56 (2020). https://doi.org/10.1029/2019WR025954.
  34. .J. Valdés-Parada, D. Lasseux, S. Whitaker, Diffusion and heterogeneous reaction in porous media: The macroscale model revisited, International Journal of Chemical Reactor Engineering 15 (2017). https://doi.org/10.1515/ijcre-2017-0151.
  35. W. Cole, N. Gates, T. Mai, D. Greer, and P. Das, “2019 Standard Scenarios Report: A U.S. Electricity Sector Outlook,” National Renewable Energy Laboratory, Golden CO, 2019. Available: https://www.nrel.gov/docs/fy20osti/74110.pdf.
  36. W. Wang, Q. Luo, B. Li, X. Wei, L. Li, and Z. Yang, “Recent Progress in Redox Flow Battery Research and Development,” Adv Funct Mater, vol. 23, no. 8, pp. 970–986, 2013, doi: 10.1002/adfm.201200694.
  37. J. Newman and W. Tiedemann, “Porous‐electrode theory with battery applications,” 1975. doi: 10.1002/aic.690210103.
  38. W. Lai and F. Ciucci, “Mathematical modeling of porous battery electrodes—Revisit of Newman’s model,” Electrochim Acta, vol. 56, no. 11, pp. 4369–4377, Apr. 2011, doi: 10.1016/j.electacta.2011.01.012.
  39. M.A. Hamid, K.C. Smith, A bottom-up, multi-scale theory for transient mass transport of redox-active species through porous electrodes beyond the pseudo-steady limit, J Power Sources 565 (2023) 232756. https://doi.org/10.1016/J.JPOWSOUR.2023.232756.
  40. M.A. Hamid, K.C. Smith, Modeling the Transient Effects of Pore-Scale Convection and Redox Reactions in the Pseudo-Steady Limit, J Electrochem Soc 167 (2020) 013521. https://doi.org/10.1149/2.0212001jes.
  41. K.Eric. Livo, K. Watson, Analysis of MASTER Thermal Data in the Greeley Area of the Front Range Urban Corridor, Colorado—Delineation of Sites for Infrastructure Resource Characterization, U.S. Geological Survey Bulletin 2196, Reston, Virginia, 2004.
  42. A. Costall, B. Harris, J.P. Pigois, Electrical Resistivity Imaging and the Saline Water Interface in High-Quality Coastal Aquifers, Surv Geophys 39 (2018). https://doi.org/10.1007/s10712-018-9468-0.
  43. X. Liu, S. Shanbhag, T. V. Bartholomew, J.F. Whitacre, M.S. Mauter, Cost Comparison of Capacitive Deionization and Reverse Osmosis for Brackish Water Desalination, ACS ES and T Engineering 1 (2021). https://doi.org/10.1021/acsestengg.0c00094.
  44. S.K. Patel, B. Lee, P. Westerhoff, M. Elimelech, The potential of electrodialysis as a cost-effective alternative to reverse osmosis for brackish water desalination, Water Res 250 (2024). https://doi.org/10.1016/j.watres.2023.121009.
  45. M.M. Generous, N.A.A. Qasem, U.A. Akbar, S.M. Zubair, Techno-economic assessment of electrodialysis and reverse osmosis desalination plants, Sep Purif Technol 272 (2021). https://doi.org/10.1016/j.seppur.2021.118875.
  46. A. Shrivastava, V.Q. Do, K.C. Smith, Efficient, Selective Sodium and Lithium Removal by Faradaic Deionization Using Symmetric Sodium Titanium Vanadium Phosphate Intercalation Electrodes, ACS Appl Mater Interfaces 14 (2022). https://doi.org/10.1021/acsami.2c03261.
  47. C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan, J. Li, H. Yu, L. Zhang, J. Shu, Prussian Blue Analogues in Aqueous Batteries and Desalination Batteries, Nanomicro Lett 13 (2021). https://doi.org/10.1007/s40820-021-00700-9.
  48. M. Gao, W. Xiao, L. Miao, Z. Yang, W. Liang, T. Ao, Q. Yang, W. Chen, Prussian blue and its analogs: A robust platform for efficient capacitive deionization, Desalination 574 (2024). https://doi.org/10.1016/j.desal.2023.117278.
  49. V.Q. Do, E.R. Reale, I.C. Loud, P.G. Rozzi, H. Tan, D.A. Willis, K.C. Smith, Embedded, micro-interdigitated flow fields in high areal-loading intercalation electrodes towards seawater desalination and beyond, Energy Environ Sci 16 (2023). https://doi.org/10.1039/d3ee01302b.
  50. E.R. Reale, L. Regenwetter, A. Agrawal, B. Dardón, N. Dicola, S. Sanagala, K.C. Smith, Low porosity, high areal-capacity Prussian blue analogue electrodes enhance salt removal and thermodynamic efficiency in symmetric Faradaic deionization with automated fluid control, Water Res X 13 (2021). https://doi.org/10.1016/j.wroa.2021.100116.
  51. J. Anderson Jr, Fundamentals of Aerodynamics, 2001. https://doi.org/10.1036/0072373350.
  52. B. Zhao, H. Sun, X. Shi, M. Qi, S. Guo, Investigation of using multi-shockwave system instead of single normal shock for improving radial inflow turbine reliability, Int J Heat Fluid Flow 71 (2018). https://doi.org/10.1016/j.ijheatfluidflow.2018.03.018.
  53. R. Srivastava, T.G. Keith, Influence of shock wave on turbomachinery blade row flutter, J Propuls Power 21 (2005). https://doi.org/10.2514/1.5325.
  54. Y. Zhu, P. Jiang, Experimental and analytical studies on the shock wave length in convergent and convergent-divergent nozzle ejectors, Energy Convers Manag 88 (2014). https://doi.org/10.1016/j.enconman.2014.09.023.
  55. W. Huang, H. Wu, Y. guang Yang, L. Yan, S. bin Li, Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows, Acta Astronaut 174 (2020). https://doi.org/10.1016/j.actaastro.2020.05.001.
  56. B.H.K. Lee, Oscillatory shock motion caused by transonic shock boundary-layer interaction, AIAA Journal 28 (1990). https://doi.org/10.2514/3.25144.
  57. B.H.K. Lee, Self-sustained shock oscillations on airfoils at transonic speeds, Progress in Aerospace Sciences 37 (2001). https://doi.org/10.1016/S0376-0421(01)00003-3.
  58. S. Rashid, F. Nawaz, A. Maqsood, S. Salamat, R. Riaz, Review of wave drag reduction techniques: Advances in active, passive, and hybrid flow control, Proc Inst Mech Eng G J Aerosp Eng 236 (2022). https://doi.org/10.1177/09544100211069796.